Common Pool Resource Issues in Managing Herbicide Resistant Weeds

David Ervin Professor of Economics & Env. Management Portland State University

USDA ERS and Farm Foundation Conference "Public and Private Sector Policy Implications of Research on the Economics of Herbicide Resistance Management."

November 8, 2013

Outline

- Problem context of herbicide resistance (HR)
- Common pool resource (CPR) complications
- Lessons from other CPR situations
- Implications for developing private and public collective institutions

Problem Context

- Escalating herbicide resistance poses serious economic and environmental risks (NRC).
- Potential economic impacts include lower yields and increased costs.
- Potential environmental impacts include soil erosion, water quality, human health, etc.
- Public and private programs to control HR weeds have not slowed its spread overall.

Problem Context cont'd

- No silver bullet technology on horizon
- Mobile herbicide resistance traits move across farm boundaries
- Solutions require collective action by heterogeneous growers in varying settings.
- This complexity requires interdisciplinary research by natural and social scientists working with growers.

Working Hypothesis

Sustainable HR management will require private and/or public collective institutions to address CPR issues via adaptive management strategies.

Common Pool Resource Complications

- Grower actions affect the welfare of other growers via weed gene movement.
- Hence, strategies to promote individual HR BMPs are insufficient to optimize the welfare of the farm community as a whole.
- Some form of private and/or public collective action is necessary.

Design Principles for CPR Mgmt (Ostrom)

- 1. Clearly defined resource boundaries
- 2. Rules adapted to local conditions
- 3. Broad participation by "appropriators"
- 4. Monitoring accountable to the appropriators with sanctions

Design Principles for CPR Mgmt (Ostrom)

- 5. Scale of graduated sanctions
- 6. Cheap and easy conflict resolution mechanisms
- 7. Self-determination of the community recognized by higher authorities
- 8. Larger issues may need "polycentric" governance with multiple layers.

Lessons from other CPR programs

- Invasive and noxious weed control
 - State regulatory approach
 - Formation of weed management areas recognizes need for community-wide effort
 - WMAs can define problem boundaries as watersheds, land use areas, etc.
 - Non-compliance procedures defined

Lessons from other CPR programs

- Boll weevil eradication
 - Caused by mobile insect that affected common pool of regional resources
 - Three agencies in polycentric approach
 - State DoAs regulatory
 - APHIS technical advice
 - CSREES info dissemination & education
 - Required 2/3 vote on referendum to expand into new areas

Lessons from other CPR programs

- Irrigation (Ostrom, Stern and Dietz)
 - Common pool of regional water resources
 - Collective approaches were alternatives to privatization or government programs
 - Spain, California and Nepal examples
 - Recognition of need for adaptive management

But CPR programs are complex....

- Agrawal (2003) meta review
- Factors affecting formation do not have unequivocal effects, e.g., size of group
- Higher group heterogeneity not always a disadvantage
- Need to account for resource, social/political contexts and personal values

Concluding observations

- 1. HR results from the interplay of biophysical, technological, economic and social factors. Leave any out at your peril!
- 2. Research on the roles of human and social capital in causing and arresting HR has been neglected.
- 3. Reliance on individual farmer approaches will fail with mobile HR traits.

Concluding observations

- 4. Private and public collective approaches are necessary but will impose cost.
- 5. Ostrom's design principles can help guide their development.
- 6. Success likely will come from participatory research using local knowledge that minimizes transaction costs.

References

- 1. Agrawal, A. 2003. "Sustainable Governance of Common-Pool Resources: Context, Methods, and Politics." Annu. Rev. Anthropology 32:243-62.
- Ervin, D. and R. Jussaume. "Integrating Social Science into Managing Herbicide Resistant Weeds and Associated Environmental Impacts," Weed Science, forthcoming.
- 3. Frisvold, G. & J. Reeves. 2010 "Resistance Management and Sustainable Use of Agricultural Biotechnology" *AgBioForum*, 13(4): 343-359

References

- 4. Miranowski and Carlson. 1986. Economic issues in public and private approaches to preserving pest susceptibility. In *Pesticide resistance: Strategies and tactics for management. Washington, DC: National* Academy Press.
- 5. Ostrom, E. et al. 2012. "The Future of the Commons: Beyond Market Failure and Government Regulation." London: Institute for Economic Affairs. 104 pp.
- 6. Ostrom, E., P. Stern, and T. Dietz. 2003. "Water Rights and the Commons." Water Resources Impact. 5(2): 9-12.
- 7. NRC. 2010. Impact of genetically engineered crops on farm sustainability in the United States. Washington, DC: National Academy Press.

Socio-Economic Drivers of HR

- Crop prices
- Costs of alternative herbicide technologies
- Company HR BMP incentives
- Farm household income
- Grower personal values about environmental stewardship

Socio-Economic Drivers of HR

- Farm program provisions, e.g., conservation compliance
- Community social network (support and peer pressure)
- Grower education
- Other?

HR Environmental Assessment

- Resistance management depends on gene mobility, BMP use and pesticide market structure (Miranowski & Carlson).
- Environmental assessments of HR therefore must integrate human behavior.
- Altering spatial and dynamic patterns of HR environmental impacts requires more interdisciplinary science.

HR Environmental Assessment

- Voluntary ag conservation programs, e.g., education, without incentives have limited effect (Ervin).
- Knowledge of socioeconomic factors with large HR management leverage under CPR conditions is needed.
- The challenge is to design programs for local conditions that integrate learning and adaptive management.

Salient Questions

- 1. How does the interplay of biophysical, economic and social factors affect growers' herbicide management?
- 2. Can we identify different types of growers that are influenced by different sets of factors?
- 3. What variables influence the efficacy of private or public collective management institutions?